Noncompact quasi‐Einstein manifolds conformal to a Euclidean space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal Geometry, Euclidean Space and Geometric Algebra

Projective geometry provides the preferred framework for most implementations of Euclidean space in graphics applications. Translations and rotations are both linear transformations in projective geometry, which helps when it comes to programming complicated geometrical operations. But there is a fundamental weakness in this approach — the Euclidean distance between points is not handled in a s...

متن کامل

Asymptotically Euclidean Ends of Ricci at Manifolds, and Conformal Inversions

We prove that a Ricci at end of a Riemannian manifold is asymptotically Euclidean if it is obtained from a smooth metric by a conformal inversion. A number of consequences are discussed.

متن کامل

Double Point Manifolds of Immersions of Spheres in Euclidean Space

Anyone who has been intrigued by the relationship between homotopy theory and diierential topology will have been inspired by the work of Bill Browder. This note contains an example of the power of these interconnections. We prove that, in the metastable range, the double point manifold a self-transverse immersion S n # R n+k is either a boundary or bordant to the real projective space RP n?k. ...

متن کامل

Embeddings and Immersions of Manifolds in Euclidean Space

The problem of computing the number of embeddings or immersions of a manifold in Euclidean space is treated from a different point of view than is usually taken. Also, a theorem dealing with the existence of an embedding of Mm in ä ¡s given. Introduction. This paper studies the existence and classification of differential immersions and embeddings of a differentiable manifold into Euclidean spa...

متن کامل

Tangent Bundle Embeddings of Manifolds in Euclidean Space

For a given n-dimensional manifold M we study the problem of finding the smallest integer N(M) such that M admits a smooth embedding in the Euclidean space R without intersecting tangent spaces. We use the Poincaré-Hopf index theorem to prove that N(S) = 4, and construct explicit examples to show that N(S) ≤ 3n + 3, where S denotes the n-sphere. Finally, for any closed manifold M, we show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2020

ISSN: 0025-584X,1522-2616

DOI: 10.1002/mana.201900189